Unit Objectives

Upon completion of this unit, the student will be able to:

– List the assumptions of the analysis of variance (ANOVA) test.
– Describe when the ANOVA test is appropriate for testing a hypothesis.
– Use SPSS to conduct an ANOVA test and correctly interpret the output.

Assumptions of the ANOVA Test

- Continuous data
- Data measured on an interval or ratio level
- 3 or more groups are being compared
- The groups are independent
- Data drawn from a normally distributed population
- Comparing means

Statistical Methods to Test Hypotheses

<table>
<thead>
<tr>
<th>Scale of Measurement</th>
<th>Two Treatment Groups Consisting of Different Individuals</th>
<th>Three or More Treatment Groups Consisting of Different Individuals</th>
<th>Before and After a Single Treatment on the Same Individuals</th>
<th>Association Between Two Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>Unpaired t test</td>
<td>ANOVA</td>
<td>Paired t test</td>
<td>Linear Regression and Pearson Correlation</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Mann-Whitney rank-sum test</td>
<td>Kruskal-Wallis statistic</td>
<td>Wilcoxon signed rank test</td>
<td>Spearman Rank Correlation</td>
</tr>
<tr>
<td>Nominal</td>
<td>Chi-square</td>
<td>Chi-square</td>
<td>McNemar’s test</td>
<td>Contingency Coefficients</td>
</tr>
</tbody>
</table>

Conducting an ANOVA Test Using SPSS

- **Assumptions**
 - Scale of measurement
 - Continuous data measured on an interval scale
 - Population distribution
 - Kolmogorov-Smirnov Test – \(p > 0.05 \)
 - Method of sampling
 - Randomized, 3 or more independent samples
 - Sample size
 - Control, \(N = 50 \)
 - Experimental, \(N = 50 \)
 - Experimental, \(N = 50 \)
- **Hypotheses**
 - Null
 - There is no difference in the ejection fraction of MI patients 3 weeks post-MI who receive TPA, Streptokinase, or a placebo.
 - Alternative
 - There is a difference in the ejection fraction of MI patients 3 weeks post-MI who receive TPA, Streptokinase, or a placebo.
- **Select Alpha Level**
 - \(\alpha = 0.05 \)
- **Test statistic**
 - ANOVA
Conducting an ANOVA Test Using SPSS continued

- **P-value**
- **Conclusion**

- **P-value**
 - $P = 0.000$

- **Conclusion**
 - P value is less than alpha. Therefore, we reject the null hypothesis and conclude that there is a difference in ejection fraction between the 3 treatment groups.
• In our prospective evaluation of ejection fraction 3 weeks post-MI, we found statistically significant differences among those treated with streptokinase and tPA as compared with placebo. The ejection fractions were 66.33 (95% CI 64.70-68.36), 70.33 (95% CI 69.14-71.52) and 50.05 (95% CI 48.91-51.19) respectively. These results were significant at the 0.05 level (F=226.15, p = 0.000).